A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis

نویسندگان

  • Emma Brunton
  • Arthur J. Lowery
  • Ramesh Rajan
چکیده

Altering the geometry of microelectrodes for use in a cortical neural prosthesis modifies the electric field generated in tissue, thereby affecting electrode efficacy and tissue damage. Commonly, electrodes with an active region located at the tip ("conical" electrodes) are used for stimulation of cortex but there is argument to believe this geometry may not be the best. Here we use finite element analysis to compare the electric fields generated by three types of electrodes, a conical electrode with exposed active tip, an annular electrode with active area located up away from the tip, and a striped annular electrode where the active annular region has bands of insulation interrupting the full active region. The results indicate that the current density on the surface of the conical electrodes can be up to 10 times greater than the current density on the annular electrodes of the same height, which may increase the propensity for tissue damage. However choosing the most efficient electrode geometry in order to reduce power consumption is dependent on the distance of the electrode to the target neurons. If neurons are located within 10 μm of the electrode, then a small conical electrode would be more power efficient. On the other hand if the target neuron is greater than 500 μm away-as happens normally when insertion of an array of electrodes into cortex results in a "kill zone" around each electrode due to insertion damage and inflammatory responses-then a large annular electrode would be more efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress analysis of all-ceramic three-unit dental bridges ‌using finite element method

Stress analysis of all-ceramic three-unit dental bridges ‌using finite element method M.F. Biria *- Dr. F. Farahmand** - Dr. Gh. Eslami Amirabadi*** *- M.S in Biomechanics Engineering Faculty of Mechanics. Sharif Industrial University. ** - Associate professor of Mecanical Engineering Dept. Sharif Industrial University. *** - Assistant professor of Orthodontics Dept. Faculty of Dentistry Shahed...

متن کامل

Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis

This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...

متن کامل

A Case study of Performance Improvement of Femur Prosthesis

Nowadays, the placement of artificial prostheses in human skeleton, etc. is common due to different reasons such as fractures or deficiencies. Prostheses are structures that assist the performance of organs by reconstruction of some body parts through different methods to enable the organ to re-obtain its performance completely or partially and, since the use of external prostheses might lead t...

متن کامل

Thread Pitch Variant in Orthodontic Mini-screws: A 3-D Finite Element Analysis

Orthodontic miniscrews are widely used as temporary anchorage devices to facilitate orthodontic movements. Miniscrew loosening is a common problem, which usually occurs during the first two weeks of treatment. Macrodesign can affect the stability of a miniscrew by changing its diameter, length, thread pitch, thread shape, tapering angle and so on. In this study, a 3-D finite element analysis wa...

متن کامل

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012